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Abstract

Intragranular bubbles grow in the nuclear fuel by diffusion and precipitation of fission gases, mainly xenon; and are ultimately
destroyed, under irradiation, by fission fragments. This article will attempt to determine the in-pile bubble distributions taking into
account the evolution of the concentration profile around a bubble during its growth and the destruction process by fission fragments.
From these distributions a relation between the bubble mean radius and the diffusion coefficient of xenon can be established, allowing the
determination, from experimental measurements of intragranular bubble sizes, of the in-pile Xe diffusion coefficient in UO2. The
estimated activation energy (0.9 eV) is about one order of magnitude lower than the widely used value of 3.9 eV determined from
out-of-pile experiments. This effect can be attributed to the presence of point defects created by the irradiation.
� 2007 Elsevier B.V. All rights reserved.

PACS: 61.72.Ji; 61.72.Qq; 61.80.�x; 66.10.Cb; 66.30.�h; 66.30.Jt
1. Introduction

Very recently Olander and Wongaswaeng [1] published
the first part of a three-paper review of the different aspects
of fission gas release (FGR). The first part reviews the irra-
diation induced fission gas resolution and the intragranular
bubble distribution evolutions. The present article will
focus on one specific aspect of intragranular gas behaviour:
the in-pile lattice diffusion coefficient. Its derivation will be
based on a careful modeling of intragranular bubble
growth and the analysis of reported bubble size distribu-
tions (or bubble populations).

Intragranular bubbles were primarily studied to under-
stand the role they play as temporary traps during the fis-
0022-3115/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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sion gas release process. This mechanism is generally
modeled, see e.g. [1–7], distinguishing an effective diffusion
coefficient from the single atom diffusion coefficient. The
effective diffusion coefficient governs the macroscopic
release rate and includes trapping and resolution effects,
grain growth, bubble coalescence, etc. while the single atom
diffusion coefficient describes the atomic-scale movement
of individual gas atoms.

Together with the resolution mechanism, diffusion of
individual atoms controls the formation, growth and
destruction of intragranular bubbles. Although conceptu-
ally much simpler than the effective diffusion coefficient
the determination of the single atom diffusion coefficient
is not straightforward and persists to give rise to conflicting
interpretations. The fundamental reason for this difficulty
is the fact that one is interested in the in-pile value of this
diffusion coefficient and that out-of-pile analysis techniques
are not adapted for this determination. Only with a correct
determination of the single atom in-pile diffusion coefficient
can relevant calculations of the effective diffusion coeffi-
cient commence.
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One of the rare observables that is directly linked with
this single atom diffusion coefficient is the size distribution
of small (nanoscale) intragranular bubbles. Such bubbles
have been observed by TEM techniques already for several
decades, and several models have been proposed to
describe their formation and growth.

In this paper, we will address some of the hypotheses
that were used in earlier work and their validity will be
assessed. A more thorough approach leads to somewhat
more sophisticated expressions, but helps understand the
domain of validity of certain hypotheses. We will finally
derive the single atom in-pile diffusion coefficient from a
set of published data.

For clarity purpose, the different symbols and notations
used in this article are summarized in Table 1.
Table 1
Nomenclature

Name
parameter

Definition

as Fixed sink length
b Probability of destruction of a bubble (and of resolution of a

the model proposed in this article)
C(r, t) Volumic concentration of Xe atoms in the lattice in r, at tim
C0 Volumic concentration of gas atoms in the matrix (lattice + i
Cb Volumic concentration of bubbles in the matrix
Cgas

bub: Amount of gas atoms present in intragranular bubbles per m
Cgas

lat Amount of gas atoms present the lattice per matrix volume u
Deff Effective diffusion coefficient
D In-pile diffusion coefficient of Xe atoms
Di i = 1,2,3 Partial contribution to the diffusion coefficient expr

term is dominant in a particular temperature range
_F Fission rate
F(Rb, t) Flux of atoms at the surface of a bubble of radius Rb, at tim
g Probability per unit of time for a Xe atom to be trapped by
jv Cation (uranium) vacancy jump rate: jv � xD exp(�2.4 eV/kB

K0 Rate of defect production per atom
kB Boltzmann constant
k Adimensional parameter describing bubble growth in an infin
lff Length of a fission track
Nb(Rb) Number of gas atoms contained in a bubble of radius Rb

xD Debye frequency of the non-disturbed lattice
XXe Volume occupied by a gas atom inside an intragranular bubb
P Correction factor proposed by Lösönen expressing the proba

with a bubble at a distance lower than Z0 from the track cen
Pdes Probability of destruction of a bubble per unit of time, this v

radius according to the chosen model
Rb Bubble mean radius
Rb(t) Radius of the growing bubble at time t

Rb,s Radius of a bubble at time s, it is an approximation of Rb

R3
b Average of R3

b from the bubble populationeRb Bubble most probable radius (peak value in the bubble distri
Rcv Radius of the capture volume
S(r, t) Volumic production rate of gas atoms in r, at time t

T Temperature
s Bubble mean lifetime. If the destruction process is independe
V Vacancy concentration
V0 Thermodynamic concentration of vacancies: exp(�2.4 eV/kBT

V Bubbles mean volume
V(Rb) Volume of a bubble of radius Rb: V ðRbÞ ¼ 4p

3 R3
b

Z Number of sites around a defect from which recombination
Z0 Radius around the fission fragment path in which bubbles ar
2. Theoretical and experimental background

2.1. Solution site and diffusion mechanism

A few studies have compared different solution sites
energies for Xe atoms in the uranium dioxide matrix. These
studies include ab initio [8,9], static calculations [10–13] and
molecular dynamics simulations [14]. It appears from these
works that the preferred solution site is either a di-vacancy
(VU + VO) or a neutral tri-vacancy (VU + 2VO), depending
on the chemical potential of the oxygen vacancy, which
depends on the stoichiometry for out-of-pile analyses or
on the irradiation conditions in in-pile experiments.

For the migration of one Xe atom a second uranium
vacancy is needed according to the simulations of [10–
Typical
value

Units

1015 m�2

Xe atom present in a bubble considering 10�3 s�1

e t 1025–1026 (at.) m�3

ntragranular bubbles) 1025–1026 (at.) m�3

1023–1024 (bub.) m�3

atrix volume unit – (at.) m�3

nit – (at.) m�3

10�17–10�21 m2s�1

10�17–10�21 m2s�1

ession established by Turnbull [15]. Each m2s�1

1018–1019 (fiss.) m�3s�1

e t – (at.) s�1

a bubble – s�1

T) s�1

104–5 � 105 (def.)/(fiss.)
1.38 � 10�23 J K�1

ite medium (see Section 4.2) 0–0.1 –
6–9 lm
– (at.)/(bub.)
�1013 s�1

le 0.036 nm3

bility of interaction of a fission fragment
terline

0–1 –

alue can depend or not on the bubble s�1

0.5–. . . nm
– nm
– nm

– nm3

bution) – nm
6–10 nm
– (at.)m�3s�1

– K
nt of bubble size, s = 1/b – s

– (vac.)/(at.)
) (vac.)/(at.)

– nm3

– nm3

is inevitable 100
e entirely destroyed 7 nm
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12]. Migration therefore occurs in a complex defect struc-
ture involving at least two uranium vacancies.

2.2. In-pile Xe diffusion coefficient

Different mechanisms influence the diffusion of fission
gas atoms in the uranium dioxide matrix. Turnbull et al.
[15] considers three main contributions, in three different
temperature regimes. This description is now widely used
by the scientific community concerned with fission gas
behaviour in nuclear oxide fuels, see e.g. [5,6,16,17].
According to [15], the single atom diffusion coefficient
can be expressed as

D ¼ D1 þ D2 þ D3; ð1Þ

where D1 represents the intrinsic diffusion coefficient, i.e.
the diffusion assisted by thermally created defects (intrinsic
defects). Turnbull used the results of Davies and Long [18]

D1 ¼ 7:6� 10�10 exp
�3:0 eV

kBT

� �
m2s�1: ð2Þ

This mechanism provides the major contribution to fis-
sion gas diffusion at high temperature (above about
1400 �C).

The second term shows a lower activation energy that
the D1 term because of the influence of a non-equilibrium
(uranium) vacancy concentration induced by the irradia-
tion. It dominates the atomic diffusion coefficient in the
temperature range 800–1400 �C. According to [15], D2

may be represented as

D2 ¼ s2jvV ; ð3Þ

where s is the atomic jump distance (3.86 Å), jv =
xD exp(�2.4 eV/kBT) s�1 the (uranium) vacancy jump rate
in the non-disturbed lattice, xD is the Debye frequency and
V the (uranium) vacancy concentration. This description
assumes that Xe atom migration is controlled by diffusion
of U vacancies to sites in the vicinity of the Xe atoms. The
concentration of vacancies created by the irradiation
(vacancies/atom) has been estimated by Sharp [19] consid-
ering mutual recombination of vacancies and interstitials
and the presence of sinks

V irr ¼
ðass2 þ ZV 0Þ

2Z
1þ 4K 0Z

jvðass2 þ ZV 2
0Þ

2

 !1=2

� 1

0@ 1A; ð4Þ

where as is the fixed sink strength, K0 is the defect produc-
tion rate per atom and Z the number of recombination
sites around a point defect from which recombination is
inevitable and V0 is the thermodynamic concentration of
vacancies per atoms (in the non-disturbed lattice):
V0 � exp(�2.4 eV/kBT). When mutual recombination is
dominant and when the irradiation induced creation of
defects is larger than the thermal creation of defects, the
vacancy concentration (vacancies/atom) can be approxi-
mated by
V � V irr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0=jvZ

q
: ð5Þ

The combination of Eqs. (3) and (5) provides

D2 ¼ constant �
ffiffiffiffi
_F

p
exp

�1:2 eV

kBT

� �
; ð6Þ

where _F is the fission rate.
The last term, D3 is the irradiation induced diffusion

coefficient. It does not depend on temperature and is pro-
portional to fission rate

D3 ¼ A _F ; ð7Þ

where the numerical value of A is 1.2 � 10�39 m5 for oxide
fuels. This mechanism provides the major contribution to
diffusion below 800 �C.

By analyzing intragranular bubble growth from TEM
observations, one is capable of deriving an atomic-scale
diffusion coefficient, which is the subject of this paper. A
priori, our approach does not distinguish between diffusion
mechanisms, but the data sets that are analyzed in this
paper are situated in the temperature domain where the
D2 term is dominant, which is indeed the most important
temperature domain for thermal fission gas release in
LWR fuels.
2.3. Bubble observations

Intragranular bubble distributions have been extensively
studied in the 1970s. Diffusion coefficient was, at that time,
often derived from bubble growth after annealing at ele-
vated temperature (e.g. [20]). Only a few articles [3,21–24]
focused on the observation of intragranular bubbles just
after irradiation. These data will enable the determination
of an in-pile value for the diffusion coefficient of Xe. The
irradiation conditions pertaining to the analyzed data are
summarized in Tables 2 and 3.

Cornell [3,21] reports measurements made on four rods
(A–D), irradiated under different conditions. These mea-
surements were done at different distances from the pellet
center, providing mean bubble radii at different tempera-
tures under the same irradiation conditions. Baker [22]
did the same for four (1–4) other rods, but measurements
of mean radii are only reported in this article for the two
first pins.

It is to be noted that these authors only report the mean
value of the bubble size distribution found at each radial
location. A bubble size distribution at each temperature
was reported by Wood [24]. Unfortunately this pin showed
columnar grains indicating that high temperature had been
reached in the central zone of the pellet, resulting in a high
fission gas release from these grains. The exact quantity of
gas present in the grain was not reported by Wood (only an
estimation of the produced amount), making it impossible
to obtain quantitative results. However, these data do
enable a qualitative validation of our approach, because,
as it will be shown in this article, the theoretical shape of



Table 2
Characteristics of Cornell data

Specimen Temperature
(�C)

Fission rate
(1018 m�3 s�1)

Burnup
(MWd/kgU)

Clatt
gas

a

(1024 m�3)
Cb

(1024 m�3)
Observed mean
diam. (nm)

Correctedb mean
diam. (nm)

Rb (nm)

A 860 6.8 1.1 10.6 0.38 1.7 / /
A 980 6.8 1.1 11.6 0.35 1.8 / /
A 1060 6.8 1.1 12.5 0.33 1.9 / /
A 1270 6.8 1.1 12.5 0.29 2 / /
A 1425 6.8 1.1 10.6 0.246 2 / /
A 1470 6.8 1.1 11.7 0.183 2.3 0.95 0.475
A 1510 6.8 1.1 9.5 0.132 2.4 1.05 0.525
A 1570 6.8 1.1 11.2 0.124 2.6 1.25 0.625
A 1580 6.8 1.1 13.1 0.118 2.8 1.45 0.725
B 785 2.6 6 50 0.33 1.6 / /
B 870 2.6 6 50 0.3 1.9 / /
B 900 2.6 6 50 0.29 2.1 0.72 0.36
C 775 2.59 12 100 0.34 1.7 / /
C 825 2.59 12 100 0.32 1.8 / /
C 850 2.59 12 100 0.3 1.9 / /
C 860 2.59 12 100 0.29 2 / /
C 875 2.59 12 100 0.27 2.1 0.72 0.36
C 880 2.59 12 100 0.26 2.06 0.69 0.345
D 775 6.42 7 56 0.26 1.74 / /
D 950 6.42 7 56 0.2 2.1 0.72 0.36
D 1075 6.42 7 56 0.15 2.5 1.15 0.575
D 1110 6.42 7 56 0.14 2.6 1.25 0.625
D 1200 6.42 7 56 0.12 2.7 1.35 0.675
D 1250 6.42 7 56 0.1 3.1 1.8 0.9

a Assumed to be the amount of gas produced during the irradiation.
b The observed diameters have been corrected according to Rühle [25]. Too small bubbles have been rejected from our study and are denoted with a /.

Table 3
Characteristics of Baker data

Specimen Temperature
(�C)

Fission rate
(1018 m�3 s�1)

Burnup
(MWd/kgU)

Clatt
gas

a

(1024 m�3)
Cb

(1024 m�3)
Observed mean
diam. (nm)

Correctedb mean
diam. (nm)

Rb (nm)

1 950 9.375 7 100 0.92 1.25 / /
1 1100 9.375 7 100 0.7 1.5 0.9 0.45
1 1215 9.375 7 100 0.55 1.6 1 0.5
1 1350 9.375 7 100 0.43 1.75 1.1 0.55
2 1000 9.375 7 100 0.87 1.4 / /
2 1185 9.375 7 100 0.8 1.5 0.9 0.45
2 1400 9.375 7 100 0.59 1.8 1.3 0.65
2 1550 9.375 7 100 0.53 2.1 1.85 0.925
2 1625 9.375 7 100 0.52 2.25 2.05 1.025
2 1650 9.375 7 100 0.44 2.1 1.85 0.925
2 1700 9.375 7 100 0.41 2.2 2 1
2 1750 9.375 7 100 0.45 2.3 2.1 1.05
2 1800 9.375 7 100 0.38 2.6 2.4 1.2
3 1575 9 7 95 0.1 0.76 / /
3 1815 9 7 95 0.1 0.9 / /
3 1930 9 7 95 0.1 1.82 1.3 0.65
3 1980 9 7 95 0.1 2.6 2.4 1.2

a Assumed to be the amount of gas produced during the irradiation.
b The observed diameters have been corrected according to Rühle [25]. Too small bubbles have been rejected from our study and are denoted with a /.
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the bubble distribution can be deduced from the mean
radius only. Regarding the samples of Cornell and Baker,
for which the gas concentration in the grain was neither
reported, we approximated the gas content of the sample
by the amount of gas locally produced. Indeed we can rea-
sonably assume observations were made in the inner parts
of the grains and are therefore less influenced by fission gas
release at the grain boundaries. This approximation can
nevertheless be debated for samples irradiated for a long
time at high temperatures.

Cornell [3,21] measured the radius from the center of
the bubble to the center of the first dark fringe observed
on TEM images in overfocussing conditions [22]. It was
found later [25] that the inner radius of the first dark
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fringe was a better estimation of actual bubble radius, but
with still an overestimation for small bubbles. Baker [22]
took the inner radius and corrected his data according
to Rühle, but it seems an erroneous interpretation of the
legend has been made. Therefore we corrected ourselves
the bubble radius, as can be seen in Tables 2 and 3. As
the contrast becomes very poor for the smallest bubbles,
it was decided to work with bubbles whose diameter is
greater than 0.7 nm.

The distribution of bubbles shows a pronounced peak,
and it is not clear that Cornell and Baker report the most
probable radius (i.e. the peak value) or if they made an
average. In the last case, attention has to be paid because
the larger bubbles, even if not numerous, can contribute
significantly to the average. The study of Section 5 will
show that moving from most probable to mean radius will
only change the derived diffusion coefficient by a factor
�1.5, and has no influence on activation energy.

3. Modeling the in-pile bubble distribution

3.1. Description of bubble behaviour from its nucleation to its

elimination

The initial radius of the bubbles (Rb(0) = R0), their life-
time and a relation between Rb(t) and the number of atoms
inside a bubble are the parameters that can be deduced
from the modeling of the bubble ‘life’: their nucleation,
the equation of state for the gas and their destruction.

3.1.1. Nucleation
It is generally accepted [5,6,15,16,22,26,27] that bubbles

nucleate in the wake of fission spikes because many bubbles
are found in randomly oriented straight lines [22]. Cornell
and Turnbull [28] also report that gas can be knocked-out
from pores and precipitates as bubbles – again in straight
lines – up to 1000 Å away from these pores [28].

According to Turnbull [15,29] the fission fragment cre-
ates large quantities of vacancies which agglomerate and
form a cavity. This cavity can trap very quickly a few gas
atoms, creating the initial bubble. The minimal stable size
is, according to Turnbull, of about 5 Å, corresponding to
a bubble of 4–5 gas atoms according to the Van der Waals
equation of state (used in Turnbull’s model). More recent
observations of Nogita and Une [31] suggest a higher den-
sity for Xe inside intragranular bubbles; changing this
number of atoms to 9–15. Nelson [30] on his side proposed
that a bubble containing only two atoms was already sta-
ble. In this study a value of zero will be taken for the initial
size. It is not expected to modify considerably the results,
particularly at high temperature, because bubbles reach
quite rapidly such a size.

3.1.2. Bubble growth

In previous models [21,26,27,29] it was generally
assumed that Xe obeys the Van der Waals equation of state
and that the surface of bubbles was at equilibrium; i.e. the
surface tension compensates the inner pressure. The equi-
librium of the surface can be questioned but the amount
of gas in a nanometric bubble is not sensitive to this since
the Van der Waals equation of state for Xe predicts density
to be limited to 2.6 g/cm3 at high pressure. It corresponds
to a volume of 0.081 nm3 per Xe atom.

Since the publication of these models, experimental
observations of intragranular bubbles [31–34] have shown
that they contain Xe in a near-solid phase, at least for
Xe-implanted samples at low temperatures (Garcia et al.)
and in the outer region of UO2 pellets (Nogita and Une).
It implies bubbles under very high pressures, in the GPa
range. They estimated the density of Xe in the bubbles to
lie between 3 and 6 g/cm3, which corresponds to a volume
of 0.036–0.072 nm3 per Xe atom. In addition to this, no
dependence of the density with the bubble size could be
observed from the measurements of Nogita and Une (for
bubble diameters ranging from 4 to 10 nm). The volume
of a Xe atom in an intragranular bubble is according to
these results close to the volume of one UO2 molecule,
which implies for the bubble to accommodate only one
uranium vacancy per additional Xe atom.

The actual mechanism of bubble growth is still an open
question, mainly concerning the importance of the vacancy
flow to the bubble surface or the emission of dislocation
loops from the bubble surface in order to equilibrate the
bubble inner pressure. However, since the gas density
equals the compressibility limit and since the uranium
vacancy needed for the bubble relaxation due to an addi-
tional Xe atom is brought together with the Xe atom (see
Section 2.1), the distinction of the uranium vacancy flow
or other bubble relaxation mechanisms are not relevant
for nanometric bubble growth.

For these reasons, the flow of gas atoms to the bubble
surface will be modeled in this work as a diffusion process
of the gas present in the matrix (see Section 3.2.1), assum-
ing that each Xe atom in the bubbles has a volume of
0.036 nm3. One should, however, be aware that the same
hypothesis does not hold for the growth of larger bubbles
where the gas density does vary with bubble size and where
other mechanisms are at play.

3.1.3. Destruction

Considering the data of Cornell [21] (annealing condi-
tions) and of Baker [22] (in-pile conditions), it can be
observed that, at identical temperature, intragranular bub-
bles grow to a bigger size after annealing than after irradi-
ation. Therefore a mechanism operating under irradiation
exists, that limits bubble growth or continuously destroys
them. Two models have been envisaged in the literature.
The model of Nelson [30] (called homogeneous model by
Olander and Wongaswaeng [1]) which proposes that atoms
are re-dissolved one by one into the matrix due to collisions
with fission fragments. With such a model it is difficult to
explain the apparition of a new population of bubbles in
a few hours [36]. Such a model should, however, be appli-
cable for larger bubbles. In the second model, proposed by
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Turnbull et al. [29] (called heterogeneous model by Olander
and Wongaswaeng [1]), bubbles are completely destroyed if
they are traversed by a fission fragment. This model was
later improved by Turnbull [4] assuming bubbles are
destroyed if their center is within a radius Z0 + Rb (Z0 is
a constant and Rb bubble radius) around a fission fragment
path. In this case the probability per unit of time that a
bubble would be destroyed is

P desðRbÞ ¼ 2 _F pðZ0 þ RbÞ2lff ; ð8Þ
the factor two stems from the fact that two fission frag-
ments are emitted per fission, _F is fission rate and lff is
the recoil length of the fission fragment.

Assuming that an equilibrium situation is reached, the
number of destroyed bubbles is then equal to the number
of bubbles created in the wake of the fission fragment.
According to Turnbull’s original model [29] (without the
constant Z0) the number of destroyed bubbles would lie
between 4 and 10 per fission event, depending on the bub-
ble concentration. According to observations this value is
quite underestimated: Baker [22] could observe from 10
bubbles at low temperature up to 100 at elevated
temperature.

Lösönen considers it not physically justified to include
the dependence of the destruction rate on the small intra-
granular bubble radius [16]. He suggests to use only the
constant Z0 instead of Z0 + Rb and adds a correcting fac-
tor P expressing the probability of interaction of the frag-
ment with the bubble. This expression will be used in this
study, with a value of Z0 � 3.5 nm [16]; and the probability
per unit of time of destruction of a bubble will be referred
as b

b ¼ 2P _F pZ2
0lff : ð9Þ

It will appear later that the exact value of b (and thus of
P or Z0) does not affect activation energy but only the pre-
factor of the Arrhénius form of the diffusion coefficient.

3.2. Review of existing intragranular bubble growth models

3.2.1. Diffusion driven growth
Bubble growth can be modeled as a diffusion process

occurring in the volume around the bubbles. In order to
simplify the problem, it is (generally implicitly, because
of the reference to Ham’s work [37]) assumed [5,16,
21,26,27,29,37] that bubbles are spherical, homogeneously
nucleated in the UO2 matrix and start growing at the same
time. This study is then, for symmetry reasons, reduced to
the growth of one bubble in a cell (the ‘capture volume’)
approximated by a sphere whose volume is equal to the
inverse of the concentration of bubbles in the matrix
(Cb). This model implicitly assumes that the presence of a
‘new’ bubble population does not affect the gas concentra-
tion profile around the existing growing bubble too much.
This could be justified if one considers that a fission spike
cannot create new bubbles near (less than a few nm from)
an existing one without destroying it.
The diffusion equation in the capture volume can then
be written for Rb < r < Rcv

oCðr; tÞ
ot

¼ Dr2Cðr; tÞ þ Sðr; tÞ

¼ D
1

r
o2ðrCðr; tÞÞ

or2
þ Sðr; tÞ; ð10Þ

where r is the distance to the bubble center. S(r, t) is the
source term corresponding to the difference between the
instantaneous gas production (due to fissions) and escape
from the grains (FGR). The variations of the average gas
concentration in a grain occurs on larger timescales than
bubble growth; therefore S(r, t) will be neglected from here.
This kind of problem is known as ‘moving boundary prob-
lem’ or Stefan problem. The boundary conditions (BC) are,
according to Ham’s hypotheses [37]

Cðr; tÞ ¼ 0; at r ¼ RbðtÞ;
oCðr;tÞ

or ¼ 0; at r ¼ Rcv;

(
ð11Þ

and the initial concentration profile is assumed to be uni-
form in the capture volume. The solution of this problem
provides the flux of atoms at the surface of the bubble,
and knowing the equation of state of the gas in the bubble,
its radius as a function of time can be calculated.

This problem has already been addressed by several
authors [5,16,21,26,29] who used a relation for the flux
established by Ham [37] under the assumption that bubble
size is much smaller than the capture volume: Rb� Rcv.
Note that in the case of intragranular bubbles, Rb varies
from 0.5 to 1.5 nm and Rcv between 6 and 15 nm. Fortu-
nately, at high temperature, when the bubble radii are big-
ger, the concentration of gas bubbles decreases [6,16,23],
making this assumption more or less valid. Ham developed
the solution in terms of the eigenfunctions of Eq. (10) sub-
jected to the BC (11), and observed that only the first term
contributed to the flux after a rapid transient (the ratio s1/
s0 of decay constants associated to the second and first
eigenfunction is about 0.15Rb/Rcv� 1). The concentration
profile was in that case

Cðr; tÞ � C0eð�t=s0Þ 1� Rb

r
� 1

2

Rbr2

R3
cv

� �
; ð12Þ

with s0 ¼ D 3Rb

R3
cv

, and the total flux at the bubble surface is

F ðRb; tÞ ¼ 4pDC0eð�t=s0ÞRb: ð13Þ

In this expression the terms C0eð�t=s0Þ can be replaced by
C0 � CbNb(Rb) to a good approximation since 0.15Rb/
Rcv� 1 and since matter is conserved. Finally the bubble
growth rate can be calculated from the flux and the number
of atoms present in the bubble

dNb

dt
¼ 4pR2

b

XXe

dRb

dt
¼ F ðRb; tÞ; ð14Þ
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therefore

dRb

dt
¼ D

C0XXe � Rb

Rcv

� �3

Rb

: ð15Þ
3.2.2. Diffusion coefficient from the saturation of bubbles

Approximate techniques allow to directly derive the dif-
fusion coefficient from the Eqs. (13) or (15) of Section
3.2.1. One of these methods, used by Cornell in [21],
assumes that saturation is reached. The amount of fission
gas present in the matrix bubbles (Cgas

bub ¼ CbNb, where
Nb is the average number of gas atoms per bubble), can
then be related to the concentration of gas present in the
lattice Cgas

lat ¼ C0 � Cgas
bub, by

gCgas
lat ¼ bCgas

bub; ð16Þ
where b is the probability per second that a Xe atom in a
bubble undergoes resolution (see Eq. (9)) and g is the prob-
ability that a Xe atom in the lattice is trapped by a bubble.
Using Ham’s results (Eq. (13)), g is equal to

g ¼ 4pDRbCb; ð17Þ
where Rb is the average radius of bubbles. From Eqs. (16)
and (17)

D ¼ bNb

4pRbðC0 � CbNbÞ
: ð18Þ

Cornell [21] described the gas in the bubble using the
Van der Waals equation of state (which can now be ques-
tioned in light of the work of Nogita and Une [31], see Sec-
tion 3.1.2). Nb was determined expressing the equilibrium
of the bubble internal pressure with the surface tension.
The equilibrium of the bubble is debatable but when the
pressure is sufficiently high (in the GPa range) the Van
der Waals equation of state reduces to a volume per atom
independent of the pressure.

Cornell expressed the mean volume of the bubbles as
V ¼ 4p

3
R3

b. This is in fact incorrect and should be replaced
by V ¼ 4p

3
R3

b. Two experimental data are thus needed to
use this relation (the bubble mean radius and the bubble
mean volume), except if a relation can be found between
bubble mean radius and bubble mean volume. In Section
5.3 we will establish that (Eq. (52))

V ¼ 6

p
� 4pR3

b

3
¼ 6

p
� V ðRbÞ: ð19Þ

Note that this method can also be used with Nelson’s
model [30] for resolution, adapting the expression for b.

3.2.3. Diffusion coefficient from the integration of bubble

growth rate

Another method was used by Turnbull [29], based on
the work of Ham [37], in order to determine diffusion coef-
ficient from the bubble growth. When only a small fraction
of the total gas is contained in intragranular bubbles, i.e.

Rb

Rcv

� C0XXe: ð20Þ
Eq. (15) becomes

dRb

dt
¼ DC0XXe

Rb

: ð21Þ

Approximating Rb by its value after the mean lifetime s
of a bubble: Rb,s

R2
b;s � R2

0 ¼ 2XXeC0Ds: ð22Þ

In this article Turnbull [29] considered that the destruc-
tion of a bubble occurred if it interacted with a fission frag-
ment (model of destruction with Z0 = 0 and considering
Rb). Noting that s = 1/b and using Eq. (9), it leads to

D ¼
p _F lffðR4

b;s � R4
0Þ

2XXeC0

: ð23Þ

Using the model of destruction chosen in this article
(Eq. (9)); the solution is then

D ¼
b R2

b;s � R2
0

� �
2XXeC0

¼
p _F PlffZ

2
0 R2

b;s � R2
0

� �
XXeC0

: ð24Þ

This model only requires the experimental average
radius of bubbles. It assumes that the fraction of total
gas contained in the bubble is small. However no informa-
tion is gained about the population of bubbles. A compar-
ison of Eq. (42) to the solution developed in Section 4.2,
Eq. (50), shows that the approximation Rs;b � Rb provides
a diffusion coefficient correct to a factor p/4 � 0.785.

4. Improvement to the previous method

4.1. Avoiding the simplifications Rb� Rcv and CbNb� C0

A more rigorous calculation, avoiding the assumptions
Rb� Rcv and CbNb� C0 can be presented as follows:

oC
ot ¼ Dr2C ¼ D 1

r
o2ðrCÞ

or2 ; for Rb < r < Rcv;

Cðr; tÞ ¼ 0; at r ¼ Rb;
oCðr;tÞ

or ¼ 0; at r ¼ Rcv;

Cðr; tÞ ¼ C0; at t ¼ 0;
dRb

dt ¼ DXXe � oC
or :

8>>>>>>><>>>>>>>:
ð25Þ

The solution can be expanded in terms of the eigenfunc-
tions of the problem

Cðr; tÞ ¼
X1
k¼0

Ck

sinð ffiffiffiffiffiak
p ðr � RbÞÞ

r
e�ak Dt; ð26Þ

where Ck are constants and ak is a solution of

tanð ffiffiffiffiffiak
p ðRcv � RbÞÞ ¼ Rcv

ffiffiffiffiffi
ak

p
: ð27Þ

The lowest ak, a0 is developing tanðxÞ � xþ x3

3

a0 ¼
3Rb

ðRcv � RbÞ3
: ð28Þ

The ratio of decay constants associated to the first and
second eigenfunction is
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s1=s0 ¼ a0=a1 � 0:14
Rb

Rcv � Rb

:

Depending on the values of Rb and Rcv we know
whether or not the higher harmonics can be considered
as a ‘rapid’ transient. If this is not the case, the exact con-
centration profile around the bubble will greatly influence
the results. In order to obtain an analytical relation
between D and Rb, we will assume that the fundamental
mode is still sufficient to describe the growth process (i.e.
s1/s0� 1).

As the concentration profile depends on time only
through the evolution of bubble radius, it can be expressed
as

Cðr; tÞ ¼ X ðRbÞ
sinð ffiffiffiffiffia0
p ðr � RbÞÞ

r
ð29Þ

and X(Rb) can be calculated expressing the conservation of
the matter in capture volume and the bubble

X ðRbÞ
Z Rcv

Rb

1

r
sinð ffiffiffiffiffia0

p ðr � RbÞÞ4pr2dr

¼
4p C0XXeR3

cv � R3
b

� �
3XXe

: ð30Þ

Thus, using m ¼ Rb

Rcv
,

CðRbÞ ¼
C0XXe � m3

XXeRbð1� mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ 3m2 � 4m3 þ m4
p : ð31Þ

The factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ 3m2 � 4m3 þ m4
p

is almost constant and
equal to 1 over a large range (up to m � 0.7 which will nor-
mally be satisfied for intragranular bubbles) and will thus
be omitted from now. The growth rate can finally be ex-
pressed as

dRb

dt
¼ DXXe

oCðr; tÞ
or

				
r¼Rb

¼ D
C0XXe �

R3
b

R3
cv

� �
Rb 1� Rb

Rcv

� �� � : ð32Þ

Following the method presented in Section 3.2.3, we can
obtain the diffusion coefficient by the integration of this
expression. It gives, with the notation n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C0XXe

3
p

Rcv

D ¼
ln

n3�R3
b;s

� �
ðn�R0Þ3

n3�R3
0ð Þðn�Rb;sÞ3

� �
6n

�
ln

n3�R3
b;s

n3�R3
0

� �
3

8>><>>:
�

tan�1 nþ2Rb;sffiffi
3
p

n

� �
� tan�1 nþ2R0ffiffi

3
p

n

� �h i
ffiffiffi
3
p

n

9=; � R2
cv

s
: ð33Þ
4.2. Determination of the in-pile diffusion coefficient: infinite

capture volume

In the two previous approaches, the transient due to the
higher harmonics has been neglected. An exact analytical
solution to the Stefan problem, can be obtained in the case
of infinite matrix where the concentration of gas is uni-
form, assuming that each xenon atom occupies a fixed vol-
ume in the bubble. This volume will, as in the previous
methods, be taken as the volume of xenon in a (near-)solid
form. This problem is mathematically very similar to the
solidification of a supercold liquid [38].

The main difference with the preceding approach is that
now no conditions exist on the concentration gradient in
Rcv, the local concentration at this point will decrease
according to the developed solution without maintaining
the condition of zero flux between cells. This condition
appeared in the previous approach from the assumption
that all bubbles nucleate at the same time, which is also
unrealistic because the diameter of a fission track is smaller
(7 nm) than the average distance between bubbles (14–
20 nm). We do not expect the condition on the flux in
Rcv to have a great influence on the results unless the losses
of the gas in the capture volume is high. Eq. (10), the
boundary and the initial conditions become, for an infinite
capture volume

oC
ot ¼ Dr2 C ¼ D 1

r
o2ðrCÞ

or2 ; for Rb < r <1
Cðr; tÞ ¼ 0; in r ¼ Rb

Cðr; tÞ ¼ C0; for r !1
Cðr; tÞ ¼ C0; at t ¼ 0
dRb

dt ¼ DXXe � oC
or :

8>>>>>><>>>>>>:
ð34Þ

By analogy to the 1D problem, a dependence in rffiffiffiffi
Dt
p is

guessed. Then, with s ¼ rffiffiffiffi
Dt
p the system (34) becomes

d2C
ds2
¼ � s

2
þ 2

s

� �
dC
ds
: ð35Þ

Thus

CðsÞ ¼ C1 þ A s � e�s2

4 �
ffiffiffi
p
p

2
erfc

s
2

� �
 �
; ð36Þ

and assuming that Rb varies as Rb ¼ 2k
ffiffiffiffiffi
Dt
p

the constant A

is then given by

CðRb; tÞ ¼ 0 ¼ C0 þ A � e�k2

2k
�

ffiffiffi
p
p

2
erfcðkÞ

 !
) A

¼ �C0 � 2k

e�k2 � k
ffiffiffi
p
p

erfcðkÞ
: ð37Þ

The bubble growth rate is

dRb

dt
¼ 2k2 D

2k
ffiffiffiffiffi
Dt
p ¼ 2Dk2

Rb

¼ DXXe

oC
or

				
r¼Rb

¼ DXXe
�C1 � 2k

e�k2 � k
ffiffiffi
p
p

erfcðkÞ
� e�k2

2kRb

" #
: ð38Þ

The parameter k is thus the solution of

2k2 � ek2 � ðe�k2 � k
ffiffiffi
p
p

erfcðkÞÞ ¼ XXe � C0: ð39Þ

The dependence of bubble radius is thus

RbðtÞ ¼ 2k
ffiffiffiffiffi
Dt
p

; ð40Þ
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and the growth rate

dRb

dt
¼ 2Dk2

Rb

: ð41Þ

This expression has the same form as Eq. (21). They
become identical for very small values of k as Eq. (39)
reduces then to k2 = C0XXe/2. The same approximation
(Rb;s � Rb) can be made and, by analogy, the diffusion coef-
ficient is given by (taking into account that in our model
R0 = 0)

D ¼
bðR2

b;s � R2
0Þ

4k2
¼

bR2
b;s

4k2
: ð42Þ
5. Bubble size distribution

5.1. Determination of the bubble population

In the last section, we presented methods to express the
diffusion coefficient as a function of the bubble mean
radius. In the first approach (Section 3.2.2) a relation
between bubble mean volume and bubble mean radius
was needed, and in the other ones (Sections 3.2.3, 4, 4.2)
we made the approximation: Rb;s � Rb. We will now evalu-
ate these approximations calculating explicitly the bubble
population (i.e. the bubble size distribution). It will be
based on the results obtained in the last approach (infinite
capture volume), because it does not neglect the transient
associated to the higher harmonics and because of the sim-
plicity of the results it will provide.

Speight [26] already estimated the bubble population
using the heterogeneous model for bubble destruction pro-
posed by Turnbull [29]. The subsequent analysis is similar,
but considering the correction proposed by Lösönen [16]
for the destruction process.

If Cb(Rb, t)dRb is the concentration of bubbles with
radii between Rb, Rb + dRb, a conservation equation can
be written

dCbðRb; tÞ
dt

¼ oCbðRb; tÞ
ot

þ d

dRb

CbðRb; tÞ
dRb

dt


 �
¼ �P desðRbÞCbðRb; tÞ: ð43Þ

If the bubble population is at equilibrium, oCbðRb;tÞ
ot ¼ 0

and this equation reduces

d

dRb

CbðRbÞ
dRb

dt


 �
¼ �P desðRbÞCbðRbÞ; ð44Þ

where Pdes(Rb) is defined in Eq. (8) and is equal to a con-
stant (Eq. (9)) according to our hypothesis on bubble
destruction. We decided to limit ourselves using only the
bubble growth rate obtained in an infinite capture volume,
Eq. (41), but Eqs. (41), (21) or (32) could also be used in the
following developments.

The most probable radius eRb is the easiest value to
deduce. It is obtained by setting dCb

dRb
¼ 0 in (44), providing
d

dRb

dRb

dt

� �
¼ �b: ð45Þ

Replacing dRb

dt by its expression (41), the diffusion coeffi-
cient is then given by

D ¼ beR2
b

2k2
: ð46Þ

From this expression it is clear that the conversion fac-
tor between radius and diffusion coefficient will just modify
the prefactor of the Arrhénius expression of diffusion coef-
ficient. The diameter of the fission spike will therefore not
affect the conclusions on activation energy.

The bubble population is then obtained integrating Eq.
(44). Using Eq. (41) for dRb

dt and normalizing this expression

CbðRbÞ
Cb

¼ bRb

2Dk2
e
�b

R2
b

4Dk2 ¼ RbeR2
b

e
�

R2
b

2eR2
b : ð47Þ
5.2. Relation between in-pile diffusion coefficient and bubble

mean radius

The bubble mean radius Rb can be calculated, assuming
a negligible initial size, from

Rb ¼
R1

0
CðRbÞRbdRbR1

0 CðRbÞdRb

: ð48Þ

It leads to the relations

Rb ¼
ffiffiffi
p
2

r eRb � 1:253eRb; ð49Þ

and finally

D ¼ bR2
b

pk2
: ð50Þ

A comparison of this result to Eq. (42) shows that the
approximation Rb;s � Rb provides a diffusion coefficient
correct to a factor p/4 � 0.785.
5.3. Bubble mean volume

The bubble mean volume V can be calculated from

V ¼
R1

0
4p
3

R3
bCðRbÞdRbR1

0
CðRbÞdRb

¼ 4p
3
�
R1

0
r4e
� r2

2eR2
b drR1

0 re
� r2

2eR2
b dr

¼ 4p
3
� 3

ffiffiffi
p
pffiffiffi

2
p eR3

b ¼
6

p
� 4p

3
R3

b: ð51Þ

The radius corresponding to a bubble of mean volume
RbðV Þ is thus equal to

RbðV Þ � 1:241Rb � 1:555eRb: ð52Þ
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6. Deriving in-pile diffusion coefficient from observed

bubble population

6.1. Results

The values of mean radius that can be found in Tables 2
and 3 were used to calculate the corresponding diffusion
coefficient. The diffusion coefficient has been calculated
with Eq. (50) which should provide the best estimate since
the deficit of gas in the capture volume was low in each
case. The transient associated to the higher harmonics can-
not therefore be neglected. The values of D are plotted with
a logarithmic scale as a function of 1/(kBT) in Fig. 1. All
sets of data tend to show the same activation energy,
around 0.9 eV, and a prefactor D0 = (3.3 ± 1.6) �
10�12 cm2/s.

From this study it not clear whether the prefactor is
really different from one sample to the other because of
Fig. 1. Diffusion coefficient determined from bubble mean radii –
comparison to Matzke [39], Cornell [20] and Turnbull [15]. Turnbull’s
curve is obtained considering a production of 5 � 105 defects per fission,
and a fission rate of 1013 fiss./(cm3 s).

Fig. 2. Population of bubbles at 1575 �C.
the uncertainties on the experimental conditions and obser-
vation procedures. The prefactor can be proportional toffiffiffiffi

_F
p

as proposed in [15], but, e.g. a supplementary depen-
dence on the gas concentration that would account for
the number of vacancy sites per gas atom can not be
excluded from our estimations. More experimental data
are needed in order to address this issue. The in-pile diffu-
sion coefficient reported by Turnbull [15], the out-of-pile
diffusion coefficient determined by Cornell [20] and the dif-
fusion coefficient in unirradiated material determined by
Matzke [39] are also reported on the graph for comparison.
6.2. Validation of the approach

The bubble distributions reported by Wood [24] will
serve to assess the validity of the model. The mean radius
was calculated from the experimental distribution. From
this value the ‘theoretical’ bubble distribution was deter-
mined using Eq. (47), and compared to the experimental
distribution in Figs. 2–5. It was chosen to calculate the the-
oretical shape from the mean radius (which is univoquely
Fig. 3. Population of bubbles at 1815 �C.

Fig. 4. Population of bubbles at 1930 �C.



Fig. 6. Bubble growth rate as a function of bubble radius in this example,
D = 10�14 cm2/s, Rcv = 10 nm and C0XXe = 0.05.

Fig. 7. Diffusion coefficient calculated with the different models in this
example, Rcv = 10 nm and C0XXe = 0.05.

Fig. 5. Population of bubbles at 1980 �C.
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determined from the distribution) rather than fitting a
function to the experimental distribution by varying the
most probable radius (which is difficult to guess from the
experimental graph). The plots of these functions in Figs.
2–5 present a good agreement, especially for the largest
bubbles of the distribution. This means that the destruction
probability for the biggest bubbles is well represented by
our model and is thus independent of the bubble radius
otherwise their size distribution would go faster to zero.

7. Discussion

The different above-mentioned methods have their own
drawbacks and advantages. In the methods based on a cell
description (Section 3.2) one considers that bubbles are
much smaller than the capture volume, which in practice
is more or less respected. We have proposed an improve-
ment to this method (Section 4), that takes into account
the finite size of the capture volume. Nevertheless, in order
to obtain an analytical solution, we still have made the
assumption that the transient associated with the higher
harmonics is very rapid.

An analytical solution of the Stefan problem has been
presented in the case of a bubble nucleating in an infinite
matrix. This solution has the advantage that the transient
is explicitly calculated, but the condition of zero flux at
the surface of the capture volume is no longer maintained.
This condition is debatable as the simultaneous nucleation
of bubbles assumed in the other methods is also unrealistic.
However, the condition on the concentration gradient in
Rcv will not greatly influence the final solution, except in
the case of large loss of the gas from the capture volume
to the bubble.

A comparison of the bubble growth rate predicted by
the different methods (Eq. (15); its approximation for low
losses of gas in the capture volume, Eqs. (21), (32) and
(41)) is plotted in Fig. 6. The curves are very close for small
Rb but Eqs. (15) and (32) reaches zero when no more gas is
present in the capture volume, as it was expected.
We will also compare the different prediction of diffu-
sion coefficient by all these methods (Eqs. (18), (24), (33),
(50)), using the same values for Rcv and C0XXe. This can
be seen in Fig. 7. Again the agreement between the curves
is good. The approach considering an infinite medium pre-
dicts the lowest diffusion coefficient because the transient
associated to the higher harmonics is explicitly treated.

The general approach developed in this work was simi-
lar to that of Turnbull [29] and Speight [26], but with a
different objective, that of determining the diffusion coeffi-
cient. The main difference is the hypothesis made regarding
the destruction probability. In our work we consider that it
is independent of bubble size, at least for the small intra-
granular bubbles. The activation energy we determined
(0.9 eV) is similar to that estimated using Turnbull’s
approach [15] if mutual recombination dominate (1.2 eV);
but it is much lower than the value calculated by Cornell
[20] from out-of-pile experiment (�3.9 eV), or than the
widely used value of Matzke [39] (3.9 eV) obtained for
unirradiated fuel. This is due to the fact that the defects
needed for the diffusion are not in thermal equilibrium,
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but rather that their concentration is regulated by the fis-
sion rate. The diffusion coefficient itself is lower, except
at low temperature, than in the unirradiated material
because of the presence of traps, but higher than in out-
of-pile diffusion experiment on irradiated fuel, in agree-
ment with the work of Matzke [40]. Interestingly, our
results suggest that the diffusion process was the same over
the whole temperature range considered (from 1100 to
2000 K), i.e. that the concentration of defects contributing
to Xe diffusion is still controlled by the irradiation damages
at 2000 K.

8. Conclusion

The model for bubble growth and destruction presented
in this article provides a diffusion coefficient of the form
D � (3.3 ± 1.6) � 10�12 exp(�0.9 eV/(kBT)) cm2/s in the
temperature range 1100–2000 K. The prefactor seems to
be slightly sensitive to the fission rate (as suggested by
Turnbull [15]), but a supplementary dependence on the
concentration of gas in the lattice can not be excluded,
which can be interpreted as the number of empty sites for
diffusion per atom. More experimental data are required
to confirm or infirm one of these hypotheses. The validity
of the destruction model used in this article is confirmed
by the bubble sizes distribution, especially for the largest
bubbles because a different hypothesis on the destruction
process would strongly modify the shape of this function
at large bubble radii.
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